TD 6: Diagonalisation (3) (Indications)

Indications pour l'exercice 1 :

Diagonaliser A puis conjecturer la solution.

Indications pour l'exercice 2:

Quelle polynôme annule A et quelles sont ses racines? En déduire que $A^2=I_n.$

Indications pour l'exercice 3:

- 1. Vérifier que ϕ est linéaire et que pour tout $P \in \mathbb{R}_n[X]$, $\phi(P)$ est un polynôme de degré inférieur ou égal à n.
- 2. La base canonique de $\mathbb{R}_2[X]$ est $(1, X, X^2)$, calculer $\phi(1)$, $\phi(X)$ et $\phi(X^2)$.
- 3. Remarquer que la matrice représentative de ϕ dans la base canonique de $\mathbb{R}_2[X]$ est triangulaire supérieure. Les valeurs propres d'une matrice triangulaire supérieure sont ses coefficients diagonaux.

Indications pour l'exercice 4:

- 1. Si A est inversible, alors $BA = A^{-1}ABA$
- 2. Penser à des contre-exemples classiques de matrices non diagonalisables et de matrices non nulles dont le produit est nul.

Indications pour l'exercice 5 :

- 1. Il est facile de voir que A est de rang 1 donc que 0 est valeur propre et que le sous-espace propre associé est de dimension 2. Une autre valeur propre de A se devine en cherchant un vecteur propre et on en déduit que A est diagonalisable.
- 2. Les 1 sur la diagonale de A imposent que pour tout $i \in \{1, 2, 3\}, a_i = \frac{1}{h}$.
- 3. Distinguer les cas M=0 et $M\neq 0$, remarquer que $\operatorname{rg}(M)=1$ (donc $\dim(\operatorname{Ker}(M))=n-1$, puis raisonner par analyse sur l'existence d'une valeur propre non nulle et d'un vecteur propre associé.

Indications pour l'exercice 6:

- 1. La base canonique de $\mathbb{R}_n[X]$ est $(1, X, ..., X^n)$. Calculer $f(X^k)$ pour tout $k \in \{0, 1, ..., n\}$.
- 2. Remarquer que la matrice de la question précédente est triangulaire supérieure.
- 3. f possède n+1 valeurs propres distinctes (il faut le justifier).

Indications pour l'exercice 7 :

- 1. Les valeurs propres de f sont racines de tout polynôme annulateur de f. Attention, il faut aussi montrer que 0 est bien valeur propre de f.
- 2. (a) Montrer que sous l'hypothèse rg(f) = 1 les éléments de Im(f) sont des vecteurs propres de f.
 - (b) Utiliser la question précédente pour montrer que $f^3 = 0$.

Indications pour l'exercice 8:

Remarquer que $X^3 - 5X^2 + 6X = X(X - 2)(X - 3)$ est un polynôme annulateur de u, puis que $E = \text{Ker}(u) \oplus \text{Ker}(u - 2\text{Id}_E) \oplus \text{Ker}(u - 3\text{Id}_E)$ en notant que $E = \text{Ker}(0_{\mathcal{L}(E)}) = \text{Ker}(u \circ (u - 2\text{Id}_E) \circ (u - 3\text{Id}_E))$ et en montrant que $\dim(\text{Ker}(f \circ g)) \leq \dim(\text{Ker}(f)) + \dim(\text{Ker}(g))$.

On peut aussi se passer de cette propriété hors programme et raisonner par analyse-synthèse pour montrer que tout vecteur de E peut s'écrire comme somme de vecteurs de chaque sous-espace propre.

Indications pour l'exercice 9 :

- 1. Appliquer le théorème du rang à la restriction de u à $\text{Im}(u^k)$
- 2. Montrer que la suite $\operatorname{Ker}(u^k)$ est stationnaire à partir du rang k_0 , c'est à dire que pour tout $k \geq k_0$, $\operatorname{Ker}(u^{k+1}) = \operatorname{Ker}(u^k)$.

- 3. Les suites $(\dim(\operatorname{Im}(u^k)))$ et $(\dim(\operatorname{Ker}(u^k)))$ sont reliées par le théorème du rang. Utiliser les deux questions précédentes et le fait que rg(u) = n 1.
- 4. La restriction d'un endomorphisme nilpotent à un sous-espace stable est encore un endomorphisme nilpotent de ce sous-espace.

Indications pour l'exercice 10 :

- 1. Le coefficient (i,j) de AB est $\sum_{k=1}^{n} a_{i,k} b_{k,j}$, montrer que tous ces coefficients sont positifs et que $\forall i \in [1,n]$, $\sum_{j=1}^{n} (\sum_{k=1}^{n} a_{i,k} b_{k,j})$
- 2. Considérer le vecteur $X = \begin{pmatrix} 1 \\ \vdots \\ 1 \end{pmatrix}$.
- 3. Considérer un vecteur propre X et poser le coefficient de X dont la valeur absolue est la plus grande.

Indications pour l'exercice 11:

- 1. Considérer la trace.
- 2. (a) A quoi ressemble une matrice diagonale de rang 1?
 - (b) Prendre un vecteur non nul de Im(w) et compléter en une base de \mathbb{R}^n , puis étudier la matrice représentative de w dans cette base.
 - (c) Utiliser la base de la question précédente.
- 3. On a $\operatorname{rg}(VA^k) \le 1$. Si $\operatorname{rg}(VA^k) = 0$ alors $VA^k = 0$, sinon VA^k est de rang 1. Montrer qu'alors $\operatorname{tr}(VA^k) = 0$ donc que $(VA^k)^2 = 0$ d'après les questions précédentes.

Par un raisonnement sur les dimensions, en déduire que $\operatorname{Im}(V) \subset \operatorname{Ker}(VA^k)$ pour conclure.

Indications pour l'exercice 12:

- 1. (a) Question de cours classique.
 - (b) Question de cours aussi.
- 2. (a) Calculer en tenant compte des égalité $p \circ p = q \circ p$ et $p^2 = p$ et $q^2 = q$.
 - (b) Se souvenir du cours sur les polynômes annulateurs.
- 3. Partir de f(x) = p(x) + q(x) = 0 et composer par p ou par q pour obtenir deux égalités différentes qui ensemble donnent p(x) = q(x).
- 4. Partir de f(x) = p(x) + q(x) = 2x et composer par p ou par q pour obtenir deux égalités différentes qui ensemble donnent p(x) = q(x).

Indications pour l'exercice 13:

- 1. Procéder par récurrence en utilisant la relation AB = A + BA.
- 2. Non, montrer par exemple qu'il n'est pas stable par somme en prenant des exemples classiques de matrices nilpotentes.
- 3. Par l'absurde : montrer que si A n'est pas nilpotente alors φ admet une infinité de valeurs propres distinctes grâce à la question 1).

Indications pour l'exercice 14:

- 1. Raisonner par analyse synthèse, supposer que f est une homothétie de rapport $\lambda ...$
- 2. (a) Remarquer que la relation (1) est équivalente à $f \circ (f (a + b) \operatorname{Id}_E) = -ab \operatorname{Id}_E$.
 - (b) Raisonner par analyse-synthèse : si f est un projecteur, alors $f^2 = f...$
- 3. (a) Raisonner (encore) par analyse-synthèse.
 - (b) La question précédente donne une idée de ce qu'il faut poser pour p et q.
- 4. Raisonner par récurrence et développer. Pour $n \in \mathbb{Z}$, commencer par montrer que $f^{-1} = b^{-1}p + a^{-1}q$ et raisonner de la même façon sur $(f^{-1})^n$.

Indications pour l'exercice 15:

- 1. Montrer par récurrence sur le nombre de sous-espaces propres de u que $F = (F \cap E_{\lambda_1}) \oplus (F \cap E_{\lambda_2}) \oplus \cdots \oplus (F \cap E_{\lambda_r})$ où $(E_{\lambda_i})_{1 \leq i \leq r}$ sont les sous-espaces propres de u.
- 2. Commencer par montrer que les sous-espaces propres de u sont stables par v, puis appliquer le résultat de la question précédente.
- 3. Étudier f sur une base qui diagonalise à la fois f^2 et f^3 , montrer que cette base diagonalise aussi f.